Preliminary communication

Theory and application of photoelectron spectroscopy XXX*. Hg–C hyperconjugation

HARTMUT SCHMIDT, ARMIN SCHWEIG

Fachbereich Physikalische Chemie der Universität Marburg, Biegenstrasse 12, D-3550 Marburg/Lahn (Germany)

and GEORGES MANUEL

Laboratoire des Organométalliques, Université Paul Sabatier, 118 route de Narbonne, F-31400 Toulouse (France)

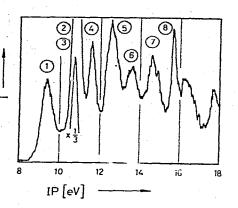
(Received April 24th, 1973)

SUMMARY

Evidence for a hyperconjugative splitting due to the interacting Hg–C σ_u and ethylene $\pi(b_{1u})$ MOs in allylmercuric chloride is presented.

Consider a π MO (energy = E_{π}) and a σ MO (energy = E_{σ} , with $E_{\sigma} < E_{\pi}$). Provided the two MOs overlap the π MO will be destabilized by $|\delta E|$ and the σ MO stabilized by $|\delta E|$. $|\delta E|$ is given as ¹:

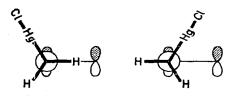
$$|\delta E| = \frac{(H_{o\pi})^2}{\Delta E} \tag{1}$$


where $\Delta E = |E_{\pi} - E_{\sigma}|$ and $H_{\sigma\pi}$ is a measure of the interaction between the σ and π MOs. Using the photoelectron (PE) spectrum of allylmercuric chloride,

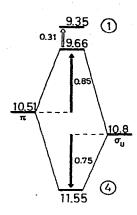
 $CH_2 = CH - CH_2 HgCl (I)$ we present below a unique example for the applicability of (1), and derive the first quantitative description of Hg-C hyperconjugation².

Figure 1 shows the PE spectrum of (I). The bands in this spectrum can be easily assigned by comparison with the PE spectrum³ of methylmercuric chloride, MeHgCl (II). (1) must be attributed to ionization from the π MO, (2) and (3) to ionization from the lone pair MOs on the Cl atom, (4) and (5) to ionization from the $\sigma_u(C-Hg)$ and $\sigma_g(C-Hg)$ MOs^{**}, (6) and (7) to ionization from several $\sigma(C-C)$ and $\sigma(C-H)$ MOs and finally (8) is the first

^{*}For part XXIX see ref. 13.


^{}**The $\sigma_{g}(C-Hg)$ ionization in (I) is superimposed on the $\sigma(C-C)$ and $\sigma(C-H)$ ionization range.

C2


Fig. 1. Photoelectron spectrum of allylmercuric chloride (I). The vertical ionization potentials (in eV) are: (1) 9.35, (2) and (3) 10.75, (4) 11.55, (5) 12.50, (6) 13.6, (7) 14.6 and (8) 15:61.

member of a group of bands due to ionization from the $5d^{10}$ shell of the mercury atom.

(I) exists only in one gauche formation⁴. In this, there may be, in addition to an inductive effect of the HgCl substituent on the π MO, hyperconjugative interaction between, on the one hand, a C-H MO and the π MO and, on the other, a C-Hg MO and the π MO. The inductive effect of HgCl is 0.0 eV^5 . The hyperconjugative destabilization of the π MO due to its overlap with the C-H MO in a gauche position is 0.31 eV^6 . Consequently, C-H hyperconjugation excluding the π MO would lie at 9.66 eV. Hence the destabilization of the π MO due to its overlap with the Hg-C MO, compared with the energy of this MO in ethylene ($\pi(b_{1u})$ MO = 10.51 eV⁷), amounts to 0.85 eV. Provided (1) can be applied then the σ_u (Hg-C) MO in (I) must be more stable than the σ_u (Hg-C) MO (10.8 eV³) in (II) by almost the same amount. This condition is very well satisfied as the splitting pattern shows, and thus from (1) we obtain for the σ (Hg-C)/ π (ethylene) interaction H_{$\sigma\pi$} = 0.5 eV (Fig.2).

This wholly novel observation, namely a clear experimental demonstration of a hyperconjugative splitting, was not possible in the case of the PE spectra of other allyl compounds, $CH_2 = CH - CH_2 X (X = Me^6, CMe_3^6, SiMe_3^{6,8,9}, GeEt_3^9, SnBu_3^9, F^{10}, Cl^{10}, Br^{10}, I^{10}$ and SMe^{11,12}), because in these systems the bands of the σ MOs involved in the hyperconjugative interaction overlap strongly with other bands.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank Dr. I.L. Wilson for reading the manuscript.

REFERENCES

- 1 M.J.S. Dewar, Hyperconjugation, Ronald Press, New York, 1962
- 2 (a) A.N. Nesmeyanov and I.I. Kritskaya, Dokl. Akad. Nauk SSSR, 121 (1958) 477; (b) Yu.G. Bundel, N.D. Antonova and A.O. Reutov, *ibid.*, 166 (1966) 1103; (c) M.M. Kreevoy, P.J. Steinwald and T.S. Straub, J. Org. Chem., 31 (1966) 4291; (d) W. Hanstein, H.J. Berwin and T.G. Traylor, J. Amer. Chem. Soc., 92 (1970) 7476; (e) T.G. Traylor, H.J. Berwin, J. Jerkunica and M.L. Hall, Pure Appl. Chem., 30 (1972) 599; (f) W. Kitching, A.J. Smith, W. Adcock and S.Q.A. Rizvi, J. Organometal. Chem., 42 (1972) 373; (g) R.D. Bach and P.A. Scherr, J. Amer. Chem. Soc., 94 (1972) 220.
- 3 J.H.D. Eland, Int. J. Mass Spectrom. Ion Phys., 4 (1970) 37.
- 4 (a) J. Mink and Yu.A. Pentin, J. Organometal. Chem., 23 (1970) 293; (b) C. Sourisseau and B. Pasquier, *ibid.*, 39 (1972) 51.
- 5 H. Schmidt and A. Schweig, unpublished results.
- 6 U. Weidner and A. Schweig, J. Organometal. Chem., 39 (1972) 261.
- 7 D.W. Turner, C. Baker, A. Baker and C. Brundle, *Molecular Photoelectron Spectroscopy*, Wiley-Interscience, New York, 1970.
- 8 U. Weidner and A. Schweig, Angew. Chem., 84 (1972) 167; Angew. Chem. Intern. Ed. Engl., 11 (1972) 146.
- 9 A. Schweig, U. Weidner and G. Manuel, J. Organometal. Chem., in press.
- 10 H. Schmidt and A. Schweig, Angew. Chem., 85 (1973) 299.
- 11 W. Schäfer and A. Schweig, Chem. Commun., (1972) 824.
- 12 W. Schäfer and A. Schweig, Tetrahedron Lett., (1972) 520.
- 13 A. Schweig et al., submitted for publication.